Turunan Pertama
Fungsi Naik dan Turun
Pertama, kita definisikan suatu fungsi dapat dikatakan sebagai fungsi naik atau fungsi turun. Perhatikan definisi berikut.
Definisi Fungsi Naik dan Turun
Suatu fungsi f dikatakan naik pada suatu selang jika untuk sembarang dua bilangan x1 dan x2 dalam selang tersebut, x1 < x2 mengakibatkan f(x1) < f(x2).
Suatu fungsi f dikatakan turun pada suatu selang jika untuk sembarang dua bilangan x1dan x2 dalam selang tersebut, x1 < x2 mengakibatkan f(x1) > f(x2).
Suatu fungsi dikatakan naik jika x bergerak ke kanan, grafik fungsi tersebut bergerak ke atas, dan turun jika grafik fungsi tersebut bergerak ke bawah. Sebagai contoh, fungsi di samping naik pada selang (–∞, a), konstan pada selang (a, b), dan turun pada selang (b, ∞). Seperti yang ditunjukkan Teorema Uji Fungsi Naik dan Turun di bawah ini, turunan positif akan mengakibatkan suatu fungsi akan naik, turunan negatif akan mengakibatkan fungsi tersebut turun, dan turunan nol pada seluruh selang akan mengakibatkan fungsi tersebut konstan pada selang tersebut.
Teorema Uji Fungsi Naik dan Turun
Misalkan f adalah fungsi yang kontinu pada selang tutup [a, b] dan terdiferensialkan pada selang buka (a, b).
- Jika f ’(x) > 0 untuk semua x dalam (a, b), maka f naik pada [a, b].
- Jika f ’(x) < 0 untuk semua x dalam (a, b), maka f turun pada [a, b].
- Jika f ’(x) = 0 untuk semua x dalam (a, b), maka f konstan pada [a, b].
Pembuktian
Kasus 1: Untuk membuktikan kasus pertama, anggap bahwa f ’(x) > 0 untuk semua xdalam selang (a, b) dan misalkan x1 < x2 adalah sembarang dua titik dalam selang tersebut. Berdasarkan Teorema Nilai Rata-Rata, kita tahu bahwa ada suatu bilangan csedemikian sehingga x1 < c < x2, dan
Karena f ’(c) > 0 dan x2 – x1 > 0, maka f(x2) – f(x1) > 0, yang mengakibatkan bahwa f(x1) < f(x2). Jadi, f naik pada selang tersebut.
Kasus 2: Untuk kasus ini, kita dapat membuktikannya dengan menggunakan alur yang serupa dengan kasus 1.
Kasus 3: Misalkan f ’(x) = 0 untuk semua x dalam selang (a, b) dan misalkan x1 < x2 adalah sembarang duat titik dalam selang tersebut. Berdasarkan Teorema Nilai Rata-Rata, kita tahu bahwa ada suatu bilangan c sedemikian sehingga x1 < c < x2, dan
Karena f ’(c) = 0 maka f(x1) – f(x2) = 0, yang berakibat f(x1) = f(x2). Jadi, fungsi tersebut tidak naik ataupun tidak turun. Dengan kata lain, fungsi tersebut konstan pada selang tersebut.
Komentar
Posting Komentar