Turunan Pertama
Fungsi Naik dan Turun
Pertama, kita definisikan suatu fungsi dapat dikatakan sebagai fungsi naik atau fungsi turun. Perhatikan definisi berikut.
Definisi Fungsi Naik dan Turun
Suatu fungsi f dikatakan naik pada suatu selang jika untuk sembarang dua bilangan x1 dan x2 dalam selang tersebut, x1 < x2 mengakibatkan f(x1) < f(x2).
Suatu fungsi f dikatakan turun pada suatu selang jika untuk sembarang dua bilangan x1dan x2 dalam selang tersebut, x1 < x2 mengakibatkan f(x1) > f(x2).

Teorema Uji Fungsi Naik dan Turun
Misalkan f adalah fungsi yang kontinu pada selang tutup [a, b] dan terdiferensialkan pada selang buka (a, b).
- Jika f ’(x) > 0 untuk semua x dalam (a, b), maka f naik pada [a, b].
- Jika f ’(x) < 0 untuk semua x dalam (a, b), maka f turun pada [a, b].
- Jika f ’(x) = 0 untuk semua x dalam (a, b), maka f konstan pada [a, b].
Pembuktian
Kasus 1: Untuk membuktikan kasus pertama, anggap bahwa f ’(x) > 0 untuk semua xdalam selang (a, b) dan misalkan x1 < x2 adalah sembarang dua titik dalam selang tersebut. Berdasarkan Teorema Nilai Rata-Rata, kita tahu bahwa ada suatu bilangan csedemikian sehingga x1 < c < x2, dan

Karena f ’(c) > 0 dan x2 – x1 > 0, maka f(x2) – f(x1) > 0, yang mengakibatkan bahwa f(x1) < f(x2). Jadi, f naik pada selang tersebut.
Kasus 2: Untuk kasus ini, kita dapat membuktikannya dengan menggunakan alur yang serupa dengan kasus 1.
Kasus 3: Misalkan f ’(x) = 0 untuk semua x dalam selang (a, b) dan misalkan x1 < x2 adalah sembarang duat titik dalam selang tersebut. Berdasarkan Teorema Nilai Rata-Rata, kita tahu bahwa ada suatu bilangan c sedemikian sehingga x1 < c < x2, dan

Karena f ’(c) = 0 maka f(x1) – f(x2) = 0, yang berakibat f(x1) = f(x2). Jadi, fungsi tersebut tidak naik ataupun tidak turun. Dengan kata lain, fungsi tersebut konstan pada selang tersebut.
Komentar
Posting Komentar